mass spectrometer located $\approx 8 \mathrm{~cm}$ from the nozzle tip. The photoionization wavelength resolution used is $1.5 \AA$ [full width at half-maximum (FWHM)].

Figure la shows the temporal profile of the $\mathrm{CH}_{3} \mathrm{SCH}_{3}$ beam pulse observed by photoionization at $1280 \AA$ using a multichannel scaler with a channel width of $10 \mu \mathrm{~s}$. Time zero of the spectrum corresponds to the initiation of the trigger pulse for opening the pulse valve. The triggering pulse for firing the excimer laser is delayed by $500 \mu \mathrm{~s}$ with respect to time zero. ${ }^{25}$ The temporal profiles for the $\mathrm{CH}_{3} \mathrm{~S}$ and CH_{3} beam pulses observed at $1250 \AA$ and laser pulse energies of 60 and 35 mJ are shown in Figure 1b,c, respectively. The accumulation time for each spectrum is 5 min . The vertical scale indicates the actual counts of various channels. The peaks indicated by arrows in Figure $1 \mathrm{~b}, \mathrm{c}$ are identified as background ions caused by the excimer laser alone. ${ }^{26}$ In order to avoid the background due to the excimer laser, the $\mathrm{CH}_{3} \mathrm{~S}^{+}$ $\left(\mathrm{CH}_{3}{ }^{+}\right)$ion counts resulting from photoionization of $\mathrm{CH}_{3} \mathrm{~S}\left(\mathrm{CH}_{3}\right)$ radicals are measured by gating the scaler in the temporal range of 0.9-2.9 ms.

The observed widths [$\approx 800 \mu \mathrm{~s}$ (FWHM)] of the $\mathrm{CH}_{3} \mathrm{~S}$ and CH_{3} beam pulses are lower than that $[\approx 1500 \mu \mathrm{~s}(\mathrm{FWHM})]$ of the $\mathrm{CH}_{3} \mathrm{SCH}_{3}$ beam pulse, but are greater than that expected based on the spacial distribution ($\approx 6 \mathrm{~mm}$) of the photodissociation region and the laser pulse width [$\approx 8 \mathrm{~ns}$ (FWHM)]. Since the radicals initially formed by photodissociation have substantial kinetic energies, the greater than expected width may be attributed to the expansion effect of translationally hot radicals and to their collisions with Ar and $\mathrm{CH}_{3} \mathrm{SCH}_{3}$ molecules in the free jet. This interpretation implies that the density of the free jet has to be sufficiently high and the pulse width sufficiently wide for complete trapping and cooling of the internally and translationally hot radicals produced by photodissociation. With use of similar experimental procedures and conditions, photoionization efficiency (PIE) spectra for SO^{27} and CS^{28} prepared by 193 -nm laser photodissociation ${ }^{29.30}$ of SO_{2} and CS_{2}, respectively, show that SO and CS sampled at the photoionization region are in the $v=0$ states.
The PIE spectra for $\mathrm{CH}_{3} \mathrm{~S}^{+}$from $\mathrm{CH}_{3} \mathrm{~S}$ and for $\mathrm{CH}_{3} \mathrm{~S}^{+}$from $\mathrm{CH}_{3} \mathrm{SCH}_{3}$ in the ranges of $1200-1470$ and $1020-1150 \AA$ are depicted in Figure 2. The threshold for the formation of $\mathrm{CH}_{3} \mathrm{~S}^{+}$ (or $\mathrm{CH}_{2} \mathrm{SH}^{+}$) from $\mathrm{CH}_{3} \mathrm{SCH}_{3}$ is determined to be $\approx 1049 \AA \AA^{16.31 .32}$ Therefore, the $\mathrm{CH}_{3} \mathrm{~S}^{+}$ions observed at wavelengths $>1200 \AA$ are due to the photoionization of $\mathrm{CH}_{3} \mathrm{~S}$. The PIE spectra for $\mathrm{CH}_{3}{ }^{+}$ from CH_{3} and for S^{+}from S^{33} near their thresholds are also shown in the figure. The observed IEs of CH_{3} and S are consistent with the literature values. ${ }^{34,35}$ Since the photoionization of $\mathrm{CH}_{3} \mathrm{~S}$ involves the removal of an essentially nonbonding electron from S , the IE of $\mathrm{CH}_{3} \mathrm{~S}$ is expected to be sharp. As the photon energy is increased, the PIE for $\mathrm{CH}_{3} \mathrm{~S}^{+}$is found to rise rapidly from 1344

[^0]$\pm 2 \AA$, which is interpreted as the IE for $\mathrm{CH}_{3} \mathrm{~S}$ to form 2. On the basis of the energy release measurements, $\Delta H_{f 0}\left(\mathrm{CH}_{3} \mathrm{~S}\right)$ is determined to be $35.0 \pm 1.0 \mathrm{kcal} / \mathrm{mol} .^{16.36}$ Most recently, a value $\Delta H_{\mathrm{f0}}\left(\mathrm{CH}_{3} \mathrm{~S}\right)=31.4 \pm 0.5 \mathrm{kcal} / \mathrm{mol}$ has been obtained by Wine and co-workers ${ }^{37}$ using a chemical kinetics bromination method. These values, together with the IE for $\mathrm{CH}_{3} \mathrm{~S}$ to 2, yield a value of $244.1-247.7 \mathrm{kcal} / \mathrm{mol}$ for $\Delta H_{\mathrm{fo}}\left(\mathrm{CH}_{3} \mathrm{~S}^{+}\right)$. The literature value for $\Delta H_{\mathrm{f} 0}\left(\mathrm{CH}_{2} \mathrm{SH}^{+}\right)$is in the range of $206-209 \mathrm{kcal} / \mathrm{mol}^{4}{ }^{4,9.15}$ The finding that $\Delta H_{\mathrm{f} 0}\left(\mathrm{CH}_{3} \mathrm{~S}^{+}\right)$is greater than $\Delta H_{\mathrm{f0}}\left(\mathrm{CH}_{2} \mathrm{SH}^{+}\right)$by $35-42 \mathrm{kcal} / \mathrm{mol}$ is consistent with the theoretical prediction of $>27 \mathrm{kcal} / \mathrm{mol} .{ }^{17}$ The PIE of $\mathrm{CH}_{3} \mathrm{~S}$ in the range of 1344-1470 \AA is small and decreases slowly toward lower photon energy, indicating that the Franck-Condon factor for photoionization to 1 is unfavorable.
(36) On the basis of energy release measurements of the processes, CH_{3} $\mathrm{SSCH}_{3}+h v(193 \mathrm{~nm}) \rightarrow 2 \mathrm{CH}_{3} \mathrm{~S}, \mathrm{CH}_{3} \mathrm{SCH}_{3}+h v(193 \mathrm{~nm}) \rightarrow \mathrm{CH}_{3} \mathrm{~S}+\mathrm{CH}_{3}$, and $\mathrm{CH}_{3} \mathrm{SH}+h \nu(193 \mathrm{~nm}) \rightarrow \mathrm{CH}_{3} \mathrm{~S}+\mathrm{H}$. See ref 16.
(37) Nicovich, J. M.: Kreutter, K. D.; van Dijk, C. A.; Wine, P. H. Private communication.

Distorted Amides: Correlation of Their Enhanced Solvolysis with Local Charge Depletions at the Carbonyl Carbon

K. E. Laidig*. ${ }^{\dagger}$ and R. F. W. Bader
 Department of Chemistry, McMaster University Hamilton, Ontario L8S 4M1, Canada Received July 26, 1990

Recently, Bennet et al. studied a series of tertiary anilides in which the rate of base hydrolysis was compared with structural characteristics determined by X-ray diffraction. ${ }^{1}$ They observed that distortion of the amide group away from planarity led to enhanced rates of hydrolysis. The distortion, resulting in the pyramidalization of the amide nitrogen, is obtained by rotation about the $\mathrm{C}-\mathrm{N}$ bond. The hydrolysis rates demonstrated that the greater the distortion, the greater the susceptibility of the carbonyl carbon to attack. The geometric observations agree with theoretical predictions which demonstrated that the resonance model fails to satisfactorily predict the consequences of rotation about the $\mathrm{C}-\mathrm{N}$ bond. ${ }^{2}$ This leaves open the origin of the enhanced rate of hydrolysis in the apparent absence of an accompanying los: in amidic resonance.
The Laplacian of the electronic charge density ($\nabla^{2} \rho$) predicts the sites of electrophilic and nucleophilic attack, as well as their relative propensity toward reaction, ${ }^{3}$ the structures and geometries of hydrogen-bonded complexes, ${ }^{4}$ the directing abilities of substituents in aromatic electrophilic substitution, ${ }^{5}$ the relative susceptibility of activated double bonds to Michael addition, ${ }^{6}$ and the relative kinetic reactivity of the syn and anti faces of the carboxylate anion. ${ }^{7}$ This note presents such a study of the relative reactivities of planar and pyramidalized formamide to nucleophilic attack by comparing the relative magnitudes of $\nabla^{2} \rho$ at the critical points in the valence-shell charge concentration (VSCC) of the carbonyl carbon. These are the holes in the VSCC which locate the sites of local charge depletion ($\nabla^{2} \rho>0$), the predicted sites for nucleophilic attack. ${ }^{3}$ These predictions, together with the predicted direction of approach of the nucleophile, agree with both experiment ${ }^{8 \mathrm{a}}$ and theory. ${ }^{8 b}$

[^1]Table I. Properties of Atoms and Critical Points in Formamide Structures

				$\nabla^{2} \rho$				$\begin{gathered} d(\mathrm{hl}-\mathrm{ncc}), \\ \mathrm{au} \\ \hline \end{gathered}$	$\phi,^{\epsilon}$ deg	$q(\mathrm{C}),^{d}$ electrons	$\tau{ }^{e}{ }^{e} \mathrm{deg}$
	$\begin{gathered} \Delta E, \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$r_{\text {CN }}, \mathrm{au}$	$\mathrm{rcos}^{\text {c }}$ au	$\mathrm{hl},$	$\begin{gathered} \mathrm{h} 2, \\ \mathrm{au} \times 10^{3} \end{gathered}$	$\begin{gathered} \mathrm{ncc}, \\ \mathrm{au} \times 10^{3} \end{gathered}$	$\theta \theta^{a}$ deg				
1	0.0	2.548	2.255	130	130	-214	0.0	2.3	14	1.978	94.1
2	3.1	2.588	2.247	152	116	-270	6.0	2.4	30	1.936	106.6
3	7.6	2.616	2.242	153	114	-285	7.4	2.5	46	1.902	110.3
4	18.7	2.686	2.228	128	128	-332	0.0	3.0	109	1.777	110.8

${ }^{a}$ The angle the carbonyl H makes with the OCN plane. ${ }^{b}$ The distance between hl and ncc. ${ }^{c}$ The torsion angle between h 1 and ncc along the $\mathrm{C}-\mathrm{N}$ bond. ${ }^{d}$ The net charge on the carbonyl carbon. 'The nitrogen pyramidalization angle, ncc- $\mathrm{N}-\mathrm{H}$.

The SCF calculations were done at the HF/6-31G**//HF/ $6-31 \mathrm{G}^{* *}$ level. ${ }^{9}$ We optimized the planar equilibrium structure, 1 , the structure corresponding to the transition state for internal rotation, ${ }^{2}$ which maximizes the pyramidalization of the nitrogen, 4 , and two distorted geometries with fixed $\mathrm{O}-\mathrm{C}-\mathrm{N}-\mathrm{H}$ torsional angles of 40° and $60^{\circ}, 2$ and $\mathbf{3}$, respectively (Figure 1).

The Laplacian quantitatively determines the extent of pyramidalization of N during $\mathrm{C}-\mathrm{N}$ bond rotation. The charge concentrations of the Laplacian ($\nabla^{2} \rho<0$) are the physical analogues of Lewis electron pairs. ${ }^{3,10}$ Thus the VSCC of the pyramidalized N in 4 exhibits three bonded and one nonbonded charge concentrations, approximately tetrahedrally directed. In 1 the nonbonded charge concentration (ncc, Table I) on \mathbf{N} is necessarily present as two equivalent maxima, above and below the plane. The VSCCs of N in 2 and 3 already exhibit the tetrahedral structure found in 4.

Rotation about the $\mathrm{C}-\mathrm{N}$ bond also results in slight pyramidalization of the carbon. This enlarges the hole (i.e., increases the value of $\nabla^{2} \rho$ at the critical point), hl, occupying the tetrahedral position in the VSCC of the carbonyl carbon. This is the origin of enhanced susceptibility in distorted amides, the greater depletion of charge at the hole in the carbon's VSCC. This prediction of incieased susceptibility to nucleophilic attack is made quantitative by the values of $\nabla^{2} \rho$. The holes in the VSCC of structures 2 and $\mathbf{3}$ display different reactivities. The one syn to the amide hydrogens and interior to the pyramid, h 2 , is less positive and hence less reactive than are the corresponding critical points in the planar amide while the enlarged hole on the opposing face, hl , is more positive and more reactive. The distance between hl and ncc and their associated torsion angle ϕ across the $\mathrm{C}-\mathrm{N}$ bond increase with increased rotation about the $\mathrm{C}-\mathrm{N}$ bond

The relative location of a critical point predicts the angle of nucleophilic attack. ${ }^{3-6}$ The critical points denoting the holes of the carbonyl carbon are found $\sim 0.53 \AA$ from its nucleus (Figure 1). In the planar amide each forms an angle of 109° with the $\mathrm{C}-\mathrm{O}$ bond, increasing to a maximum of 112° in 3 , in agreement with experiment. ${ }^{8}$ The net charges on the carbonyl carbon atoms are determined by spatial integration of the charge density over the atomic basins (Table I). The pyramidalization of \mathbf{N} changes its hybridization from sp^{2} to sp^{3}, resulting in the transfer of electronic charge from \mathbf{N} to C , decreasing somewhat the large net positive charge on \mathbf{C}. The distortion found in $\mathbf{2}$ is predicted to significantly increase the reactivity of the carbonyl carbon in spite of a slight decrease in its net charge. This demonstrates that the dominant factor in determining relative reactivity is not the magnitude of an atomic charge but rather the extent of charge concentration or charge depletion, as determined by the Laplacian of the density. ${ }^{3-7}$

Our predictions of increased propensity for reaction are the result of the response of the VSCC to the geometric distortion about the carbonyl carbon. This reorganization of charge will occur in solution as well as in the gas phase. The field generated

[^2]

1

2

3

4

Figure 1. Newman projections of the four rotamers of formamide. Here hl and h 2 represent the more and less reactive holes in the VSCC of carbon, respectively, and x represents the nec on nitrogen. The dashed lines to H represent the $\mathrm{N}-\mathrm{H}$ bonds.
by solvent molecules might make a small perturbation to the VSCC, but previous experience with electric fields has shown that the greatest perturbations are made to the outer, diffuse distribution. ${ }^{11 \mathrm{a}}$ The VSCC, a tightly bound region of charge, is much less likely to be affected by external fields. This will be considered in detail in a future publication. ${ }^{11 \mathrm{~b}}$
The barrier to amidic rotation and its associated bond lengthening results from the transfer of charge from \mathbf{N} to C , induced by the accompanying pyramidalization of \mathbf{N}, which decreases the electron-nuclear attractive energy more than it decreases the repulsive energies. ${ }^{12}$ Bennet et al. ${ }^{1}$ explain the enhanced reactivity of the distorted amides by arguing that since N is pyramidalized in the transition state, the more distorted amide is closer in energy to the transition state. The present results show that this investment in energy also pyramidalizes the carbon, increasing the extent of its charge depletion, thereby increasing its susceptibility to nucleophilic attack.
(11) (a) Laidig, K. E.; Bader, R. F. W. J. Chem. Phys. 1990, 93, 7213. (b) Laidig, K. E., work in final preparation.
(12) Bader, R. F. W.; Cheeseman, J. R.; Laidig, K. E.; Wiberg, K. B.; Breneman, C. M. J. Am. Chem. Soc. 1990, I/2, 6530.

Facile Aryl-Aryl Exchange between the Palladium Center and Phosphine Ligands in Palladium(II) Complexes

Kwang-Cheng Kong and Chien-Hong Cheng*
 Department of Chemistry, National Tsing Hua University Hsinchu, Taiwan 300, Republic of China

Received April 10, 1991
It is known that $\mathrm{PdL}_{2}(\mathrm{Ar}) \mathrm{X} 1(\mathrm{~L}=$ phosphine, $\mathrm{Ar}=$ aryl) is involved as an important intermediate in a vast number of pal-ladium-mediated organic syntheses such as carbonylation of aromatic halides, ${ }^{1}$ arylation of olefins, ${ }^{2}$ and coupling of aryl halides

[^3]
[^0]: (25) The excimer laser delay time is chosen to maximize the $\mathrm{CH}_{3} \mathrm{~S}$ signal as observed by photoionization.
 (26) These peaks are the only features in the spectra when the photoionization vacuum UV light source is off.
 (27) Norwood, K.; Nourbakhsh, S.; He, G.-Z.: Ng, C. Y. Unpublished results.
 (28) Norwood, K.; Nourbakhsh, S.; He, G.-Z.; Ng, C. Y. Chem. Phys. Lett., submitted for publication.
 (29) The $193-\mathrm{nm}$ laser photofragmentation TOF mass spectrometric study of SO_{2} shows that the vibrational distribution of SO for $v=0,1.2$ and 3 is 0.05:0.23:0.67:0.05. See: Felder, P.: Effenhauser, C. S.; Haas. B. M.; Huber, J. R. Chem. Phys. Lett. 1988, $148,417$.
 (30) It is known that CS formed in 193 -nm laser photofragmentation of CS_{2} are in the $\operatorname{CS}(\mathrm{X}, v=0-13)$ states, corresponding to internal excitations up to $45 \mathrm{kcal} / \mathrm{mol}$. See: Tzeng, W. B.: Yin, H.-M.; Leung, W.-Y.; Luo, J.-Y.; Nourbakhsh, S.; Flesch, G. D.; Ng, C. Y. J. Chem. Phys. 1988, 88, 1658 and references cited therein.
 (31) The theoretical study of Radom and co-workers suggests that the singlet $\mathrm{CH}_{2}=\mathrm{SH}^{+}\left({ }^{\prime} \mathrm{A}^{\prime}\right)$ is formed exclusively at the dissociation threshold from $\mathrm{CH}_{3} \mathrm{SCH}_{3}{ }^{+}$and $\mathrm{CH}_{3} \mathrm{SSCH}_{3}^{+}$. See ref 17.
 (32) Akopyan, M. E.; Sergeev, Yu. L.; Vilesov, F. I. Khim. Vys. Energ. 1970, 4, 305 .
 (33) Sulfur atoms are produced from the $193-\mathrm{nm}$ photodissociation of $\mathrm{CH}_{3} \mathrm{~S}$. See ref 16 .
 (34) Chupka, W. A.; Lifshitz, C. J. Chem. Phys. 1968, 48, 1109.
 (35) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Homes, J. L.: Levin. R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, I7 (Suppl. I), 68, 641.

[^1]: ${ }^{\dagger}$ Present address: University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW, U.K.
 (1) Bennet, A. J.; Wang, Q. P.; Slebocka-Tilk, H.; Somayaji, V.; Brown, R. S.; Santarsiero, B. D. J. Am. Chem. Soc. 1990, Il2, 6383.
 (2) Wiberg, K. B.; Laidig, K. E. J. Am. Chem. Soc. 1987, I09, 5953.
 (3) (a) Bader, R. F. W.; MacDougall, P. J.; Lau, C. D. H. J. Am. Chem. Soc. 1984, 106, 1594 . (b) Bader, R. F. W.; MacDougall, P. J. J. Am. Chem. Soc. 1985, 107, 6788.
 (4) Carroll, M. T.; Chang, C.; Bader, R. F. W. Mol. Phys, 1988, 63, 387.
 (5) Bader, R. F. W.; Chang, C. J. Phys. Chem. 1989, 93, 2946.
 (6) Carroll, M. T.; Cheeseman, J. R.; Osman, R.; Weinstein, H. J. Phys. Chem. 1989, 93, 5120.
 (7) Laidig, K. E. J. Am. Chem. Soc., submitted.

[^2]: (8) (a) Burgi, H. B.; Dunitz, J. D. Acc. Chem. Res. 1983, 16, 153. (b) Stone, A. J.; Erskine, R. W. J. Am. Chem. Soc. 1980, $102,7185$.
 (9) (a) Hariharan, P. C.; Pople, J. A. Chem. Phys. Lett. 1972, 66, 217. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. (c) Binkley, J. S.; Pople, J. A. J. Chem. Phys. 1977, 66, 879. (d) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
 (I0) Bader, R. F. W.; Gillespie, R. J.; MacDougall, P. J. From Atoms to Polymers; Liebman, J. F., Greenberg, A., Eds.; VCH: New York, 1989.

[^3]: (1) (a) Schoenberg, A.; Heck, R. F. J. Am. Chem. 1974, 96, 776I. (b) Yoshida, H.; Sugita, N.; Kudo, K.; Takezaki, Y. Bull. Chem. Soc. Jpn. 1976, 49, 1681. (c) Tanaka, M. Tetrahedron Lett. 1979, 2601. (d) Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: New York, 1985. (e) Bumagin, N. A.; Gulevich, Yu. V.; Beletskaya, I. P. J. Organomet. Chem. 1985, 285, 415.
 (2) (a) Larock, R. C. Pure Appl. Chem. 1990, 62, 653. (b) Heck, R. F J. Am. Chem. Soc. 1968, 90, 5518. (c) Heck, R. F. J. Am. Chem. Soc. 1968, 90,5542 . (d) Li, C. S.; Cheng, C. H.; Cheng, S. S.; Shaw, J. S. J. Chem. Soc., Chem. Commun. 1990, 1774. (e) Li, C. S.; Cheng, C. H.; Liao, F. L.; Wang, S. L. J. Chem. Soc., Chem. Commun., in press.

